skincaremanual.org

 

Cholera education campaign launched in Somali capital

July 10, 2017

In the naked mole-rat, however, this mutated ion channel is sufficient to inhibit signal transduction. The reason for the mutation in the ion channel, according to the researchers, is that naked mole-rats have adapted over the course of evolution to the high CO2 levels in the air and thus have become insensitive to pain induced by acid. This is also the case when in the nerve cells of the naked mole-rats other ion channels are activated by acid stimuli that would normally activate pain receptors.

Cave-roosting microbats and tree-roosting megabats

In a number of mammals the structure of the gene for the Nav1.7 ion channel has been decoded. These include the cave-roosting microbat (Myotis lucifigus), a bat that lives in a similar habitat and exhibits a similar gene variant. In contrast, another species, the tree-roosting megabat (Pteropus vampyrus), also lives in large colonies like the mole-rat and the cave-roosting microbat, but it is not under any CO2 pressure. According to the researchers, this suggests that under similar environmental conditions in the course of evolution, unrelated species develop similar traits. For the African naked mole-rat, and perhaps for the cave-roosting microbat, this means that CO2 and acid cannot induce pain.

Significance for patients with inflammatory diseases?

What do the findings of the MDC researchers mean for patients with inflammatory diseases, in whom this ion channel is continuously activated? According to Professor Lewin, the pharmaceutical industry is already working to develop small molecules that will block this ion channel. The findings from the laboratory of Professor Lewin - that three altered protein subunits inhibit the signal transduction of Nav1.7 - may aid the development of small molecules that specifically block this mutated ion channel.

Source: Helmholtz Association of German Research Centres

©2017 - skincaremanual.org