Lobbying reports highlight focus on health care rules, calorie-count laws

June 11, 2017

In this way, the researchers showed how the binding site has to be structurally constituted so that the apricot fragrance activates the receptor. Using molecular dynamics simulations, they then analysed the two binding partners in greater depth. They found that, in the dynamic interplay of the interaction between receptor and odorant molecule, specific chemical bonds, called hydrogen bridges, form and separate. "It's like a tango, where the female dancer constantly separates from her partner and joins him again at another point" explains Gerwert. "The receptor uses the dynamic hydrogen bonding pattern to distinguish between activating and non-activating odours."

Predictions for other olfactory receptors

The researchers established how many molecular junctions the interaction partners have to form in order for a smell to activate an olfactory receptor. They also managed to specifically manipulate a receptor protein in the model and in the experiment so that it detected papaya fragrance instead of apricot fragrance. "The findings can help to generate specific 'super-olfactory sensors' for a defined fragrance" says Hatt. "Since olfactory receptors not only occur in the nose, but also in many other tissues in the human body, for example in the prostate, in sperm, and in the intestines, the results may help to develop novel therapeutic approaches". The work was carried out as part of the Collaborative Research Centre SFB 642. The Mercator Foundation supported Prof. Gerwert with a grant.

Source: Ruhr-University Bochum

©2017 -